Nonlinear Programming
and the
Kuhn-Tucker Conditions

Our constrained optimization analysis has dealt only with situations in which there is a single
constraint, and in which all the variables are generally positive at the optimum. This rules out
situations where there are multiple constraints, where there are non-binding constraints, and where

non-negativity constraints may be binding (i.e., where some variables may be zero at the optimum).

The Kuhn-Tucker Conditions provide a unified treatment of constrained optimization in which

e there may be any number of constraints;

constraints may be binding or not binding at the solution;

boundary solutions (some z;’s = 0) are permitted;

non-negativity and structural constraints are treated in the same way;

dual variables (also called Lagrange multipliers) are shadow values (i.e., marginal values).

The Kuhn-Tucker Conditions are simply the first-order conditions for a constrained optimization
problem — a generalization of the first-order conditions we’re familiar with, a generalization that
can handle the situations described above. A special case covered by the Kuhn-Tucker Conditions

is Linear Programming.

The Kuhn-Tucker Conditions

Let f: R" — R and G : R® — R™ be continuously differentiable functions, and let b € R™.
We want to characterize those vectors X € R” that satisfy
(¥) X is a solution of the problem
Maximize f(x) subject to x 2 0 and G(x) < b,

i.e., subject to Ty, Ty, ..., 7, = 0 and to G'(x) < b; fori =1,...,m.

The Kuhn-Tucker Conditions are the first-order conditions that characterize the vectors X that

satisfy (%) (when appropriate second-order conditions are satisfied, which we’ll see momentarily):
JA1, ..., A € Ry such that

(KT1) Forj=1,...,n: 2L < Yo Ai%? with equality if Z; > 0 ;

(KT2) Fori=1,...,m: G'X) < b, with equality if A; > 0 ,

where the partial derivatives are evaluated at X.



The Kuhn-Tucker Conditions given above are in partial derivative form. An equivalent statement

of the conditions is in gradient form:

JA € RT such that
(KT1) Vf = 221 AMVG and X- (Vf— 221 )\iVGi) =0;
(KT2) GX)<b and A (b—-G(X))=0,

where gradients are evaluated at X.

The Kuhn-Tucker Theorems

The first theorem below says that the Kuhn-Tucker Conditions are sufficient to guarantee that X
satisfies (), and the second theorem says that the Kuhn-Tucker Conditions are necessary for X to

satisfy (x). Taken together, the two theorems are called the Kuhn-Tucker Theorem.

Theorem 1: Assume that each G* is quasi-convex and either (a) f is concave or (b) f is quasi-
concave and Vf # 0 at X. If X satisfies the Kuhn-Tucker Conditions then X satisfies (x).
[Briefly, (KT) = (x).]

Theorem 2: Assume that f is quasi-concave and G satisfies one of the constraint qualifications
(to be described shortly). If X satisfies (*) then X satisfies the Kuhn-Tucker Conditions.
[Briefly, (x) = (KT).]

The next theorem tells us how changes in the values of the b;’s affect the value of the objective
function f. For the nonlinear programming problem defined by f, GG, and b, define the value

function v : R™ — R as follows:

Vb € R™: v(b) is the value of f(X) where X satisfies (x).

Theorem 3: If (x) and (KT) are both satisfied at X, then \; = g—;’i for each 1.

In other words, ); is the “shadow value” of the i™® constraint, the marginal value to the objective

function of relaxing or tightening the constraint by one unit.

Note that second-order (curvature/convexity/concavity) conditions are required in order for the
Kuhn-Tucker (first-order) conditions to be either necessary or sufficient for X to be a solution to

the nonlinear programming problem.
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